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Abstract: Interest in leveraging smartphone technology for scientific data collection has 
increased significantly in recent years. Mobile platforms have now been employed to 
investigate a variety of physiological and behavioral phenomena. Here we add to this rapidly 
growing body of work, using a specially designed mobile application to collect data on text 
legibility using a paradigm that mirrors established laboratory methods. Lexical decision 
data (an established proxy for text legibility) were collected from a smartphone platform 
over the course of several months, ultimately resulting in a sample of trials equivalent to a 
moderately sized lab experiment. Two typefaces (Frutiger and Eurostile) were tested in both 
positive and negative polarities. Results suggest that the participant sample was highly 
motivated and willing to participate in periodic task probes during an engagement period of 
1-2 weeks. Consistent with previous work, positive polarity text was read more easily than 
negative polarity, and response accuracy rose with display duration. However, no significant 
effects were observed for typeface (i.e., comparing Eurostile to Frutiger) under the testing 
conditions. Although the application successfully collected activity state and illumination for 
a majority of trials, sampling rates were insufficient to make comparisons along these 
dimensions. There was also some concern that the application framework may not present 
stimuli with reliable timing. Given the relatively small sample size of this initial 
investigation and the uncontrolled experiment setting, the results suggest that there is 
substantive potential for this approach as a viable platform for experimental data collection. 
The trade-offs inherent in a mobile data collection are substantial, and are discussed in detail 
for this project. 

 
Background 

Legibility and the Limits of the Lab 

Legibility has long been of paramount importance to experimental psychology and 
human factors research, and as more reading is done at a glance from smartphone 
screens, the particular effects of this mode of reading have come under scientific scrutiny. 
Reading at a glance, in contrast to longer-form reading, may well have different 
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ergonomic properties, and makes different demands of the reader, especially if the 
reading is being done secondarily to some other task (as when reading from an in-vehicle 
information system, glancing at a wearable device while exercising, or checking a 
message on a smartphone while walking to a meeting).  

In recent years, the AgeLab has undertaken a number of studies designed to examine 
reading at a glance. The earliest of these looked at reading in a multi-tasking environment 
(Reimer et al., 2014). Participants drove a driving simulator while also completing a 
simple menu selection task, thus necessitating that menus be read in short glances. Menu 
items were set in either the Frutiger or Eurostile typefaces, controlling for optical size. It 
was thought by typographic experts that the Frutiger typeface, with its more open letter 
spacing and more varied character shapes, would be more legible at a glance than the 
rigid and geometric Eurostile. Indeed, the results showed that menus set in Frutiger were 
read more quickly and more accurately than those set in Eurostile. The AgeLab has since 
followed up this work with studies on a variety of typographic issues. Eschewing the 
complexities and overhead of the driving simulator, legibility has been probed using 
laboratory-based methodologies, making data collection more efficient and flexible. 
Studies have confirmed the effect of typographic style (Dobres et al., 2016b; Dobres, 
Chrysler, Wolfe, Chahine, & Reimer, 2017b), and also investigated related effects such 
as contrast polarity (i.e., black-on-white text or the opposite) and letter size (Dobres et al., 
2016b), ambient illumination (Dobres, Chahine, & Reimer, 2017a; Wolfe, Dobres, 
Kosovicheva, Rosenholtz, & Reimer, 2016), visual noise and aging (Wolfe et al., 2016), 
font weight (Dobres, Chahine, Reimer, Gould, & Zhao, 2016a; Dobres, Reimer, & 
Chahine, 2016c), case and compression (Sawyer, Dobres, Chahine, & Reimer, 2017), and 
many other related factors. 

As these laboratory methods have been used to explore typographic differences at ever-
greater levels of granularity, it has become clear that there are some limitations on how 
small a difference these experimental methods can detect. For example, while gross 
differences in typographic size typically produce clear and obvious differences in 
dependent measures, differences in font weight have been more difficult to reveal 
experimentally. While typefaces with a large number of stylistic differences have been 
explored in the lab, typefaces that are more visually similar do not separate in the 
experimental data as easily (see Dobres et al., 2016a for examples). Since laboratory 
methods typically rely on relatively small sample sizes from which to draw inferences, it 
is possible that the samples are too small to attain the statistical power needed to reveal 
potentially significant effects. Some of the typographic factors previously investigated, 
such as typographic style, showed small effect sizes (Dobres et al., 2016b). Power 
analyses suggest that to detect these effects reliably and consistently could require up to 
several hundred participants. Such sample sizes are beyond the bounds of most laboratory 
experiments. 
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Smartphone Science 

As smartphones and smartphone-adjacent mobile technologies have come to play central 
roles in daily life, interest in leveraging these platforms for scientific purposes has 
increased dramatically. The appeal is obvious. A smartphone is essentially an internet-
connected sensor array, which can both collect data passively, and/or remind the user to 
perform some action or “check in” with some piece of data at regular intervals. With 
millions of people now carrying smartphones at all times, there exists an unprecedented 
opportunity for in situ data collection relevant to any number behavioral, psychological, 
and medical fields (Miller, 2012; Thomas & Azmitia, 2015). Activity in this area has 
gained considerable momentum, with major software companies releasing development 
kits specific to the collection of research-quality data from smartphone platforms 
(“ResearchKit - Apple Developer,” n.d.; “ResearchStack,” n.d.) 

Smartphones have already been used as a data collection framework across a wide variety 
of disciplines. Smartphone-based experimental paradigms have been used to examine, for 
example: lexical processing (Dufau et al., 2011), mindfulness intervention (Howells, 
Ivtzan, & Eiroa-Orosa, 2014), linguistics (Myers, 2016), mathematical cognition 
(Zimmerman et al., 2016), and physical fitness interventions (Fanning et al., 2017). For 
extensive reviews, see (Miller, 2012; Swan, 2013; Thomas & Azmitia, 2015). Given the 
limitations of laboratory-based investigations of legibility discussed above, there seemed 
an excellent opportunity to adapt these laboratory methods to a smartphone platform. 
Note that while the study by Dufau et al. (2011) deployed a lexical decision task on a 
mobile platform, as the present study does, Dufau’s study is markedly different in intent, 
presentation, and methodology. The Dufau study examined lexicality itself (i.e., whether 
the frequency of a word in its lexicon is related to how quickly a person can read it), had 
participants complete large blocks of trials at a time, and relied on participants to 
manually email collected data to the researchers. The present study uses the lexical 
decision task as a probe for text legibility (see below), deploys small numbers of trials in 
situ, and automatically centralizes data collection in real-time. 

TypeTester 

In the summer of 2017, the AgeLab launched a pilot study of TypeTester, a mobile 
application intended to conduct visual design research “in the wild”. The platform 
sacrifices strict laboratory-level experimental control in exchange for the potential to 
collect large samples of data, with the hope that greater sampling would make it possible 
to reveal more subtle effects of visual design on perception that cannot be exposed with 
the smaller samples typical in lab work. 

The application has three essential components: an implementation of the key legibility 
task, a researcher backend for configuring experiments, and a gamification element that 
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allowed users to track their progress and remain engaged in the data collection process 
(for example, tracking their number of completed trials, and maintaining contact for a 
weekly raffle that served as reimbursement for participating). The legibility task follows 
established laboratory methods for measuring legibility (see description below), while the 
backend grants the researcher control over the typeface used, the combination of 
background/foreground colors, size of the typeface, and display duration. Participants 
who enrolled in the pilot would receive periodic notifications containing short 
“challenges”—small groups of experiment trials. Participants were entered into a weekly 
raffle as reimbursement for continued participation. Details on how TypeTester was 
designed are presented in Klarl (2017). 

Methods 

Lexical Decision Task 

 
Figure 1: An illustration of a single lexical decision trial. The participant is presented with a prompt 
screen describing the number of trials to be completed in this “challenge”. A gibberish visual mask is 
displayed for 200ms, followed by the target word/non-word (variable timing), and then a final mask. 
Finally, the user is prompted to decide whether the target was a word or non-word. The font and text 
sizes used in the illustration above do not represent those of the final experiment. The figure omits a 
brief blank screen between the prompt and the first mask. 

Previous research at the AgeLab has utilized a yes-no lexical decision task (Meyer & 
Schvaneveldt, 1971) to probe the legibility of various typographic configurations. In this 
paradigm, a word or non-word is presented for some brief display duration, and the 
participant is then asked to indicate whether the stimulus just seen was a valid word. A 
schematic of the task as implemented in TypeTester is presented in Figure 1. The 
participant’s mobile device receives a notification indicating that a new “challenge” is 
ready. Upon opening the application, the participant is presented with a “ready” prompt 
indicating the number of trials to be completed in this challenge. The participant taps to 
indicate that she/he is ready, and then a lexical decision trial is presented. This is 
comprised of an initial blank screen matching the background color of the trial’s stimulus 
configuration, followed by a gibberish mask that is displayed for 200ms. This is followed 
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by the target word/non-word, which is presented for a predetermined variable time, as 
described below. This is immediately followed by another 200ms mask, and finally, a 
response screen in which the user is prompted to decide whether the stimulus was a word 
or non-word. Participants were not provided with feedback regarding the accuracy of 
their responses either during or after the completion of trials. 

Challenges were delivered at random intervals throughout the time windows that 
participants indicated they would be willing to receive messages. The goal of this random 
deployment of trials was to attempt to capture data from a variety of potential 
multitasking situations, as well as indoor/outdoor lighting conditions and different 
activity states (i.e., sitting, walking, etc.). 

Conditions 

 
Figure 2: Pangram type samples of the two typefaces used in the present study: Frutiger (top) and 
Eurostile (bottom). Figure from (Dobres et al., 2016b). 

The primary stimuli of this experiment were English words and non-words selected from 
an online orthographic database (Medler & Binder, n.d.). Words were selected such that 
they were relatively common in the English lexicon, and constrained to be exactly six 
letters in length. Six-letter non-words were generated with properties to appear similar to 
the word list. For further details on the creation of these lists, see (Dobres et al., 2016b). 
Gibberish masks were composed of randomized non-letter characters, and two different 
randomized masks were used for the pre- and post-stimulus masks of each trial. All 
word/non-word stimuli were presented in lowercase letters. 

This study examined conditions previously investigated in the context of a driving 
simulator and under classical psychophysical paradigms (Dobres et al., 2016b; Reimer, 
Mehler, Dobres, Coughlin, Matteson, Gould, Chahine, & Levantovsky, 2014). The 
Frutiger and Eurostile typefaces were used, and both were presented in two color 
combinations (positive polarity black-on-white, and negative polarity white-on-black). In 
addition, each of these 4 combinations was presented at 5 display durations (33, 67, 100, 
133, and 167ms), for a total of 20 conditions. As in previous experiments, “white” was 
hex color #ffffff, and “black” was hex color #000000. All masks and lexical decision 
stimuli were presented at the center of the device screen. Frutiger and Eurostile were 
presented at nominal heights of 22 points and 20 points, respectively, which equalized the 
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heights of their capital ‘H’ characters on screen. Note that here, “point” does not refer to 
the classic typographic size unit, but rather, a virtualized pixel. On lower-end mobile 
device with relatively low-resolution screens, a single “point” may correspond to a single 
hardware pixel. On high-resolution screens, a single “point” may be composed of several 
pixels. While the operating system usually treats one points’ worth of pixels as a single 
unit for screen layout and for determining overall font sizes, various graphics routines 
make use of the individual pixels within each point for added sharpness. This is 
particularly common for text rendering algorithms.  

Participants & Participation 

Upon downloading the application from the Google Play store and launching it, 
participants were asked to affirm that they were at least 18 years of age, U.S. citizens, and 
native English speakers. They were then presented with a brief consent document 
approved by MIT’s institutional review board for human subjects research. The consent 
document explained the type of data that was to be collected, potential risks/rewards of 
participating, the right to stop participation at any time, and guarantee of data anonymity. 
After the consent was digitally signed, participants provided basic demographic 
information and a valid email address (which was used only for reimbursement purposes 
and was stored separately from experimental data). Participants then received a small set 
of practice trials designed to familiarize them with the experiment task. Subsequently, 
challenges containing trials pertinent to the main experiment were delivered at intervals 
throughout the participant’s chosen participation windows. 

A total of 151 individuals participated in the TypeTester program through mid-September 
2017. Participants ranged in age from 19 to 84, with a median age of 44. The 
representation of ages across the lifespan skewed slightly young, but nevertheless 
represents a good variety of ages (Figure 3). Among participants who disclosed a gender, 
63 identified as male, 62 as female, and 1 as transgender. The remaining 25 gave no 
response for this question. Age did not differ significantly between genders (p = 0.496). 
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Figure 3: Age distribution for participants who disclosed a date of birth.  

Trial-level data indicate that the majority of responses were collected within the first 
month of launch (Figure 4). The median participation window was 6.2 days (75% of 
users stopped participating after 10 days). Few trials were collected on weekends, 
suggesting that most users retained the default notification settings, which exclude 
weekends. Most participants contributed a relatively large number of trials. Half of all 
participants completed at least 97 trials, and 80% of participants completed at least 93 
trials (Figure 5). 

 
Figure 4: Trials completed per day since initial launch. 
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Figure 5: Distribution of trials completed per participant, suggestive of a high degree of engagement 
among those who agreed to participate. 

Data Reduction & Metrics 

Data were analyzed in R (R Core Team, 2018). Trials with a response time greater than 5 
seconds were excluded from analysis (and from the statistics presented above), 
constituting 1.6% of the raw data. The 5-second cutoff was chosen for consistency with 
lab standards, which grant the participant no more than 5 seconds for a response. Median 
response time in the remaining sample was 1.2 seconds. While this is considerably slower 
than response times observed in laboratory conditions (which are on the order of 100-
300ms), it is to be expected that a sporadic finger tap to a touch screen would be slower 
than a highly practiced key press in a lab.  

These data comprise 13,619 trials, roughly equivalent to a sample size of about 34 
participants in a 4-condition laboratory study. Notably, trial distribution was random and 
somewhat uneven: 3,583 Eurostile Negative, 2,483 Frutiger Negative, 2,570 Eurostile 
Positive, and 4,983 Frutiger Positive. 

The primary metric of this pilot is response accuracy, that is, how often a correct 
response was made per each condition. Trial responses were averaged per participant and 
condition to produce individual-level accuracy measures. An alternative approach that 
disregards participant identification and treats each condition as a large “bucket of trials” 
produced similar statistical results. The individual-level approach is therefore used for 
greater consistency with laboratory results, which would typically be calculated per 
participant. Note that trials were randomly and unevenly distributed to each participant, 
and it cannot be guaranteed that each participant saw every condition, or even a relatively 
equal number of trials per condition. 
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Activity state was determined from estimates reported by the Android operating system. 
Based on accelerometer and gyroscopic data, the system provided estimates for various 
activity states on a scale of 0-100. Possible activity states included: in vehicle, on bicycle, 
on foot, walking, running, tilting, still, and unknown. A confidence level was reported for 
each of these possibilities per trial. The state with the highest confidence rating is taken 
as the activity on that trial. 

Results 

 
Figure 6: Mean performance accuracy in the 4 conditions of interest at each display duration (error 
bars are ±1 mean-adjusted SEM). 

Figure 6 shows response accuracy across all conditions examined in this study. An 
ANOVA that included age group (younger than 44/44 and older), gender, typeface, 
polarity, and display duration as predictors found significant main effects of display 
duration (X2 = 95.7, p < 0.001), and polarity (X2 = 5.34, p = 0.021), and a statistical trend 
for age (X2 = 2.07, p = 0.150; when considered as a linear predictor instead of a group, 
this effect weakens somewhat). No other significant main effects or interactions are 
evident. Notably, the effect of typeface (Frutiger or Eurostile) on response accuracy 
shows no evidence of statistical significance or of a trend toward significance (X2 = 0.06, 
p = 0.800). For clarity, a plot that aggregates across typeface is included below (Figure 
7). 
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Figure 7: Mean performance accuracy for each display duration and polarity, aggregated across 
typefaces (per participant). Labeling as in Figure 6. 

Although the data do follow a typical psychophysical curve, with accuracy rising along 
with display duration (as we would expect, as longer durations allow more reading time), 
the results are curious. The data suggest that 80% response accuracy would be achieved 
quite early in the curve, at speeds faster than 67ms. This is much faster than the 80% 
accuracy threshold seen in earlier experiments, which typically required 80-140ms 
depending upon condition. However, it is difficult to say whether the size of the fonts 
used here is optically larger than those seen in the lab, which may affect these measures. 

Finally, the use of a smartphone-based platform allows for the collection of 
environmental data, such as the user’s activity state (stationary, walking, in a vehicle, 
etc.) and ambient illumination. The application successfully collected illumination data 
for 86% of trials, though it should be noted that many of these values, while non-zero 
(zero indicates “unknown”), are suspiciously low. Likewise, activity state was estimated 
with sufficient confidence (i.e., “activity unknown” was not the estimate with the highest 
probability) on 84% of trials. 

Unfortunately, illumination and activity states are quite lopsided in this sample. The vast 
majority of trials were conducted in a “stationary” or “tilting” state. Similarly, the 
overwhelming majority of trials were conducted under indoor lighting (here, indoor 
lighting is liberally defined as less than 2000 lux; the two categories are usually easy to 
separate, with typical indoor lighting being around 500 lux, and outdoor lighting ten 
times that). The tables below give counts for each state and condition: 



MIT	AgeLab	White	Paper	2018-1	(November	12,	2018)	 11	

 
Massachusetts	Institute	of	Technology	>	AgeLab	>	77	Massachusetts	Ave,	E40-275,	Cambridge,	MA	02139	

Phone:	617.253.0753	>	fax:	617.258.7570	>	agelab@mit.edu	>	agelab.mit.edu	

 

 
Given the sparseness of trials conducted in non-stationary states, and especially of trials 
conducted outdoors, it would be statistically unsound to attempt any meaningful 
comparisons of these dimensions. 

Discussion 

These data suggest that a mobile data collection platform for visual design issues has 
some potential. Even with relatively little in the way of resources and promotion, enough 
data were collected to represent a typical laboratory-based sample size. Participants 
spanned a wide age range and were gender-balanced. Participation rates suggest that the 
sample pool was highly motivated, and that most people were willing to participate for 1-
2 weeks. Primary results demonstrate a significant effect of typeface polarity consistent 
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with previous research. However, there was no evidence that the pilot was able to 
separate differences between typefaces (indeed, across all trials, accuracies were 86.6% 
for Frutiger and 86.1% for Eurostile). A secondary analysis that included only trials with 
a response time of 1 second or less (attempting to capture only highly attentive responses) 
does not produce results different from those seen in the general sample. While the 
experiment controlled for differences in size between the two typefaces by requesting 
appropriately scaled sizes for each, it is impossible to control the experiment-wide 
display size across a panoply of digital devices and casual viewing distances. It is very 
likely that fonts appeared optically larger in this study than in previous laboratory-based 
work. This may explain why this experiment failed to detect an effect of typeface, 
especially given that previous studies have shown that typeface differences become more 
pronounced at smaller sizes (Dobres et al., 2016b). 

The significant effect of display duration is consistent with expected psychophysical 
patterns, and in this sense is reassuring. However, the high response accuracy observed 
even for very brief presentation times (67ms) is a cause for concern. This suggests that 
the smartphone platform may not be reliable enough to provide accurate stimulus timing. 
It is also possible that the probable larger display size of the stimuli, as described above, 
made the task substantially easier. If timing is the culprit, this concern might be overcome 
simply by accepting the lower timing accuracy and choosing wider duration gaps.  

Although the platform successfully recorded activity state and illumination in the 
majority of cases, it appears that participants were rarely willing to participate in 
TypeTester challenges when outdoors or when not stationary. One has to wonder if 
pausing one’s movements indoors and then completing the TypeTester task is due to an 
active effort to avoid environmental characteristics outdoors, or is more a byproduct of 
overall phone use behavior. Likewise, the borderline effect of age suggests that a larger 
sample would be beneficial. If a much larger sample could be obtained (perhaps ten times 
as many responses), other patterns may begin to emerge. As discussed above, one of the 
great advantages of these types of distributed data collection platforms is their ability to 
gather very large amounts of data. In this case, however, TypeTester was able to collect a 
number of responses equivalent to a moderately sized laboratory sample. The major 
limiting factor in this case seems to be that TypeTester was only made available for the 
Android operating system, and was not compatible with the popular iOS/iPhone platform. 
It is worth pointing out, however, that once the platform was deployed, data collection 
was entirely passive. No significant staff time was required for data collection, 
reimbursement costs were minimal ($25/week), and participants could contribute data 
without needing to travel to a specific location or otherwise take time out of their regular 
daily schedules. These advantages should not be dismissed. Initiatives such as 
TypeTester are in their infancy, and we believe that they show substantial potential for 
scientific research in the future.  
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